Need a wee lie down?

Syncope/presyncope/seizure at exercise When/how to investigate??

Craig Reilly, BVM&S CertSAM MRCVS

He "had a fit" when we were in the park!

- History to indicate severity of problem and to differentiate:
- Syncope (O₂/BP)
- Seizures (brain function)
- EpisodicWeakness (incl. Presyncope)

Initial signs vital:

- Loss of consciousness?
- Did collapse start as flaccid +/- pale MM? (appropriate physiological response to low BP)
- Any sign lateralisation?
- Pre/post-ictal signs?
- Relation to feeding? (blood glucose/ammonia)

Syncope

Marine Ma

Cardiac

- tachy/brady
- outflow obstruction
- pump failure
- cardiac tamponade

Non-cardiac

- Vaso-vagal (tachy and hypertensive, followed by brady and hypotensive)
- (carotid sinus)
- (tussive/postural)

50% in man never diagnosed - these don't usually die!

Case Presentation: Gordon

- 6 year old male Bulldog
- One syncopal episode three weeks previously
- Intermittent low volume diarrhoea
- Distended abdomen

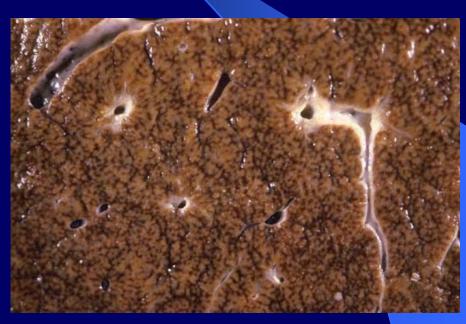
	Clinical Sign
Weight	28.0 kg
Demeanour	Bright, alert.
Mucous membranes	Colour difficult to assess (heavy pigmentation), tongue salmon pink, normal CRT (<2 seconds)
Heart	Rate normal (140 bpm), no abnormal sounds or rhythm, easily audible both sides
Pulses	Femoral pulses weak, difficult to count. No pulse deficit or digital pulses detected.
Neck	Jugular distension visible (if head held up high to stretch neck skin).
Respiration	Rate elevated (25/minute). Significant URT noise referred to chest.
Peripheral lymph nodes	All palpable, not enlarged or painful.
Abdomen	"Drum-tight", non-painful, no fluid thrill, auscultation – excessive borborygmi. Rectal examination – normal faeces present, prostate normal size, no pain.
Eyes	Normal, pupils equal and reacting to light
Rectal Temperature	Normal (38.0 C)

Problem List

- Abdominal distension
- Bilateral jugular distension

- Syncope (at exercise)
- Tachypnoea
- Intermittent diarrhoea

Differential Diagnoses


Abdominal distension and bilaterally distended jugulars

• **Right heart failure** - therefore distension most likely due to modified transudate +/- hepatomegaly due to passive venous congestion if acute or subacute, or to "nutmeg" liver if chronic.

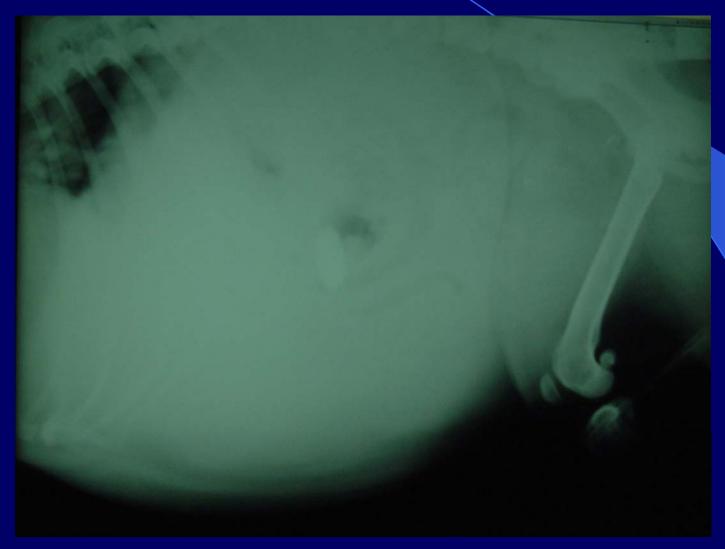
Other causes of abdominal distension to be considered if CHF not present include:

- other effusions (pure transudate, exudate (non-septic and septic))
- other fluids (blood, urine, bile, (chyle))
- · fat
- · faeces· organomegaly · (aerophagia -breed)

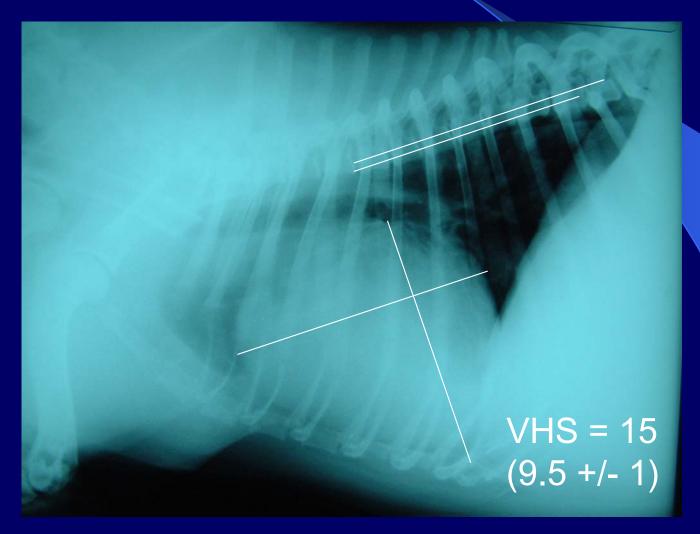
Differentials for Gordon`s Syncope

- Cardiac tamponade (pericardial effusion) (??Pulsus paradoxicus absent)
- Lung expansion restriction due to severe abdominal distension/ pleural effusion
- Dysrhythmias esp. bradydysrhythmias (breed), SVT, VTach
- Vasovagal (breed)
- Upper respiratory obstruction (breed)
- (Pulmonary hypertension) Rare
- (Pulmonic/aortic stenosis) No murmur
- (HCM (obstructive))
- (Hypoglycaemia)

- Presence of abdominal effusion (with intestinal mural oedema)
- (Primary liver/gastrointestinal disease)
- (Dietary indiscretion)


Tachypnoea

- Lung expansion restriction
- •Reduced alveolar ventilation eg. pulmonary oedema, alveolar exudates
- Stress induced (in consultation)
- (reduced lung compliance)



Gordon – right lateral abdomen

Gordon – right lateral thorax (inflated)

Parameter	Result	Reference Range				
Heart Rate	140-160	70-160				
Rhythm	sinus					
Р	0.04- 0.06 sec* 0.15 mV	0.04 sec 0.4 mV				
P-R		0.06-0.13 sec				
qRs	0.04 sec 0.4 mV	<0.05 sec <2.0 mV				
Q-T	0.2 sec	0.15-0.25 sec				
MEA		+40° to +100°				
Comment	Muscle tremor					

Gordon – ECG in right lateral recumbency, no sedation

Abdominocentesis

serosanguinous modified transudate

•SG 1.023, Blood +++, pH 8.0, protein ++ (Combur8Test) which clotted within a few minutes

B-mode, right parasternal short and long axis views

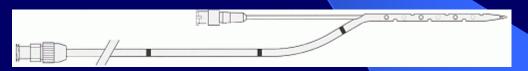


Differentials for Pericardial effusion

- Tumour (HSA right atrium, mesothelioma, chemodectoma, ectopic thyroid carcinoma, lymphoma, metastases)
- Idiopathic pericardial effusion (IPE)
- Haemorrhage secondary to ruptured atrium
- Septic pericarditis

Investigation

- Ultrasound
- Cytology of effusion (buffy coat 30%)
- Hypoglobulinaemia
- At pericardiectomy
- Post mortem



Treatment options

- Diuretics contraindicated
- Pericardiocentesis
- (Martin Direct Puncture Pericardiocentesis Set)
- Repeat pericardiocentesis or pericardiectomy (thoracotomy or thorascopic pericardiectomy)

Ben Graham

- 8 year old MN black labrador
- 32 kg
- mild exercise intolerance 1 week
- equivocal weight loss

- Tonic clonic seizure at exercise (duration less than 30 secs)
- Bright and alert
- Good appetite

Clinical findings

- bright and alert
- good colour
- no lymphadenomegaly
- HR 120/min, pulse strong and regular
- no pulse deficit
- CRT 1 second
- Rectal temp 38.3 °C

- RR 25/min
- slight hyperpnoea
- cranial nerve refexes normal
- normal proprioception all four legs

Problem List

Tonic clonic seizure at exercise

- Exercise Intolerance (mild)
- Weight loss (??)

Compile differential list, or opt for screening tests?

Investigate/not??

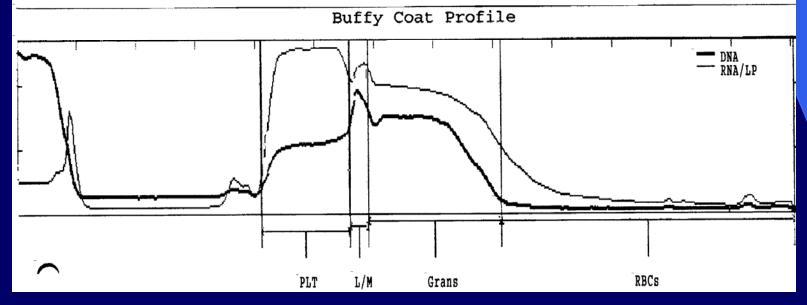
Screening tests

Seizures

- rule out cardiac (ECG)
- rule out metabolic
 - low glucose
 - low calcium
 - hepatic/renal
 - (low magnesium)
- *then* investigate CNS

Episodic weakness

- ACTH stim
- Edrophonium response test +/-ACh rec Ab
- EMG and nerve conduction velocities
- muscle biopsies
- (thyroid)



Species : Adult Canine

Patient : BEN Client : GRAHAM Ver: 6.7A

Date: 21-Nov-2002 12:49PM

Test	Results		s	Reference Range			Indicator		
And the same of th	*indo.	a properties and a second of the second	ar an ini ang at an ang af a jana ini an an aka aft ga tan dan dan galaman bi an an in	in the state of th		en de aproximación de la companya d La companya de la companya del companya de la companya de la companya del companya de la companya del la companya de la	LOW	NORMAL	HIGH
HCT	=	51. 2	용	37.	0 -	55.0			1
HGB	=	17.4	g/dl	12.	0 -	18.0			
MCHC	=	34.0	g/dl	30.	0 -	36.9			I
WBC	=	19.4	x10 ⁹ /L	6.	0 -	16.9			
GRANS	=	15.7	x10 ⁹ /L	3.	3 -	12.0			
%GRANS L/M % ✓M	- = - -=	19	x10 ⁹ /L %	1.		6.3	-		
\mathbf{PL}_{\perp}	>	245	x10 ⁹ /L	17	5 -	500			
Retics	~	0.9	ક						

Cedarmount Veterinary Clinic 67 Bryansburn Road, Bangor, Co Down, BT20 3SD 028 91 271364

Species : Adult Canine

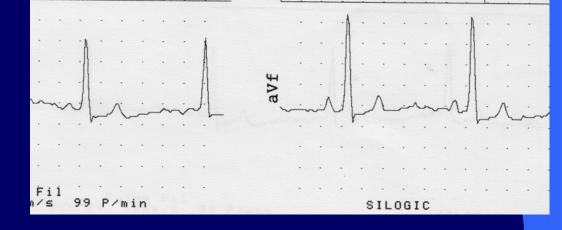
Patient : BEN

Client : GRAHAM

Ver: 6.7A

Date: 21-Nov-2002 12:49PM

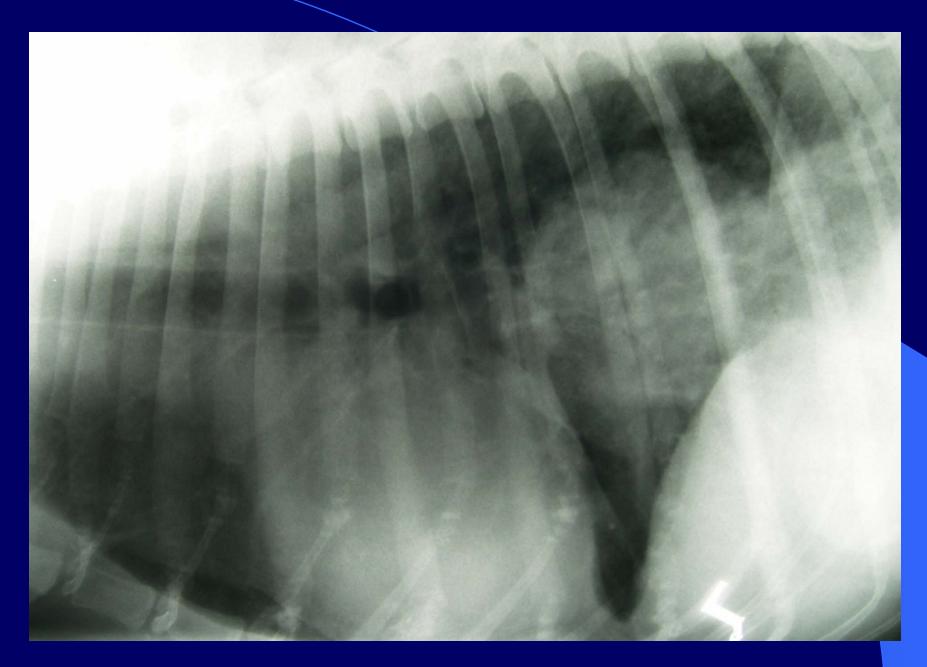

	Results			Refer	Reference Range			Indicator		
							LOW	NORMAL	HIGH	
ALB	=	- 33	g/1	27	-	38	n and management measure makes	W. Carlotte and Car		
ALKP	=	57	U/L	23	-	212				
ALT	=	20	U/L	10	-	100	3.13			
AMYL	=	1041	U/L	500	·-	1500				
UREA	=	2.32	mmol/1	2.50	-	9.64				
Ca		2.52	mmol/1	1.98	-	3.00				
CHOL	=	3.19	mmol/1	2.84	-	8.27				
CREA	=	118	umol/l	44	-	159			T	
GL		5.87	mmol/l	4.28	-	6.94		State and an address of a control of the control of	1	
PHOS	=	0.95	mmol/l	0.81	٠_	2.19				
TBIL	=	3	umol/1	0	-	15				
TP	=	62	g/1	52	-	82		7.16 L.		
GLOB	=		g/1	25	-	45				

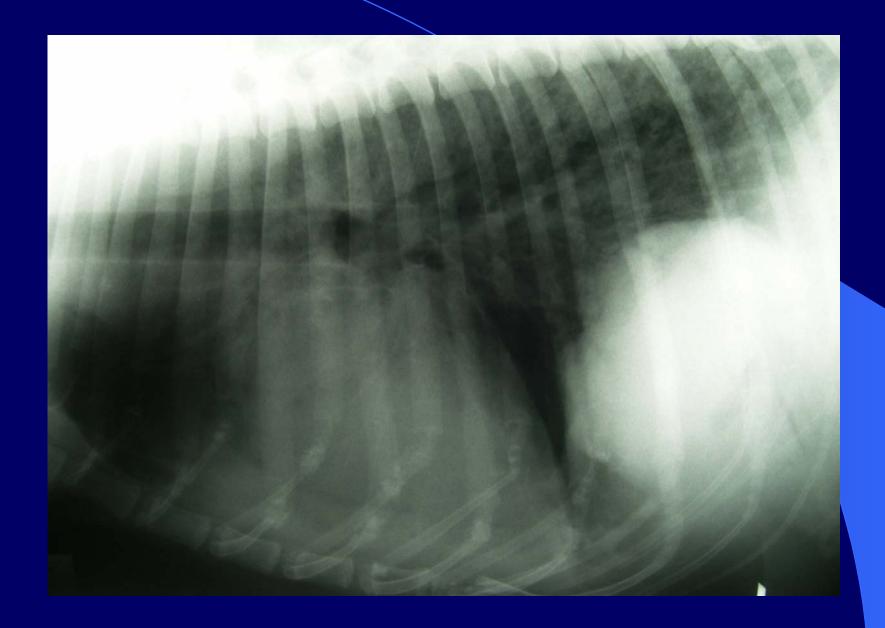

Na, K, Cl, and blood pH - all within reference range (Istat)

Ben 6 lead trace

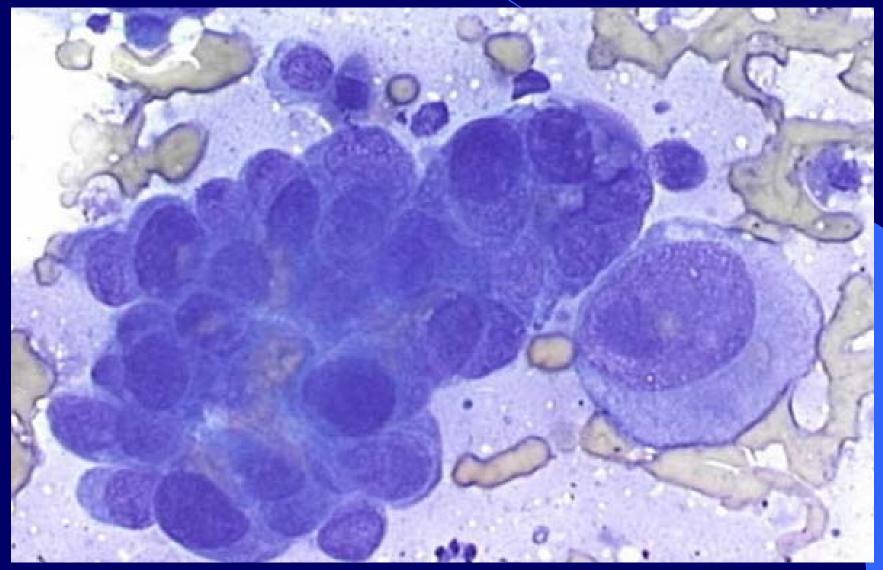
I

2 cm/mV 50 mm/s





Ben - Lead II



FNA mass

Case Presentation: Mack

- 9 year old MN WHWT,
- historical grade II/VI, mid-systolic, soft murmur, loudest at the apex of the heart on the left-hand side
- three short pre-syncopal episodes at exercise

Presyncope

- he staggered to one side
- sternal recumbency for a few seconds
- hind legs straight out behind
- No loss of consciousness, urination, defaecation or salivation
- No confusion
- Recovery in a few seconds
- His appetite and thirst were normal.

	Clinical Sign
Weight	10.0 kg
Demeanour	Nervous, bright, alert.
Mucous membranes	Deep pink, moist, normal CRT (1.5 seconds)
Heart	Rate slow 55 /minute, normal: 70-160/minute and regular. On prolonged auscultation, occasional pauses of around two seconds were detected. Soft, grade II/VI, protosystolic murmur, loudest on the left, at the apex of the heart
Pulses	Femoral pulses strong. No pulse deficit.
Neck	No jugular distension/pulses.
Respiration	Rate normal (15/minute). No abnormal lung sounds were detected
Peripheral lymph nodes	All palpable, not enlarged or painful.
Abdomen	No pain or organomegaly on palpation.
Eyes	Normal, pupils equal and reacting to light
Ears	Waxy otitis externa (right). Not possible to visualise the tympanic membrane on right
Rectal Temperature	Normal (38.1 C)

Problem List

- Pre-syncope, at exercise
- Bradycardia (regular, with intermittent pauses)
- Murmur

- (Otitis externa)
- (Obesity)

Presyncope, at exercise

Cardiac cause suspected, since:

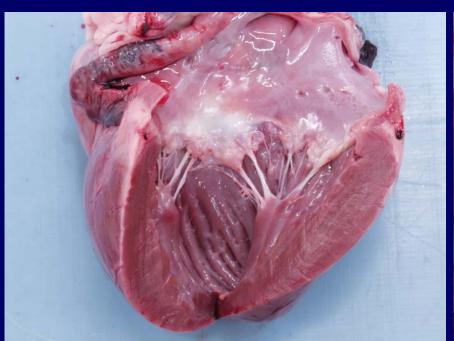
- 1. It occurred at exercise,
- It lasted only a few seconds with a rapid recovery,
- 3. There was no loss of consciousness, muscle spasm, cyanosis or confusion,
- 4. There was a bradycardia.
 - ie. **arrythmia**, but also considering possible causes of forward failure (pulmonic/subaortic stenosis, pericardial tamponade (unlikely no jugular distension or pulsus paradoxicus), heart failure) and vasovagal syncope.

Bradycardia (regular, with intermittent pause in the rhythm)

- Sinus bradycardia
- Intermittent sinus arrest or sinoatrial standstill
- Sick-sinus syndrome
- Heart block (3rd or advanced 2nd degree)

Other disorders which might cause bradydysrhthmias.

- Respiratory disease (increased vagal tone -especially chronic pulmonary disease of WHWT (IPF))
- · Hyperkalaemia (hypoadrenocorticism, acute renal failure (very unlikely))
- Hypocalcaemia (hypoparathyroidim)
- · Hypoglycaemia (insulinoma)
- Hypothyroidism

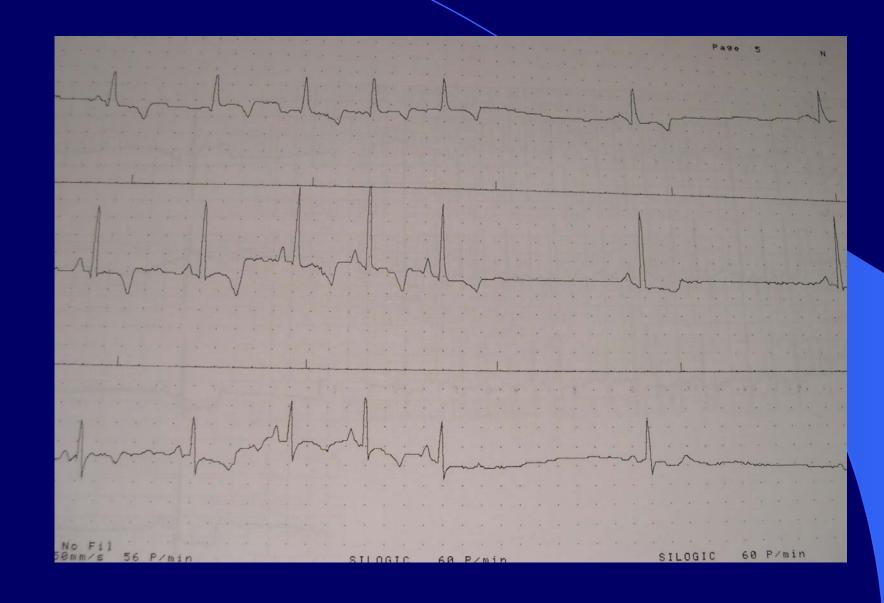

Miscellaneous:

Neurological and neuromuscular disorders, epilepsy, CNS tumour, myasthenia gravis, polymyopathy/polymyositis, vestibular disease (including extension from otitis externa (no other signs of this detected – no nystagmus or head tilt observed at any time)).

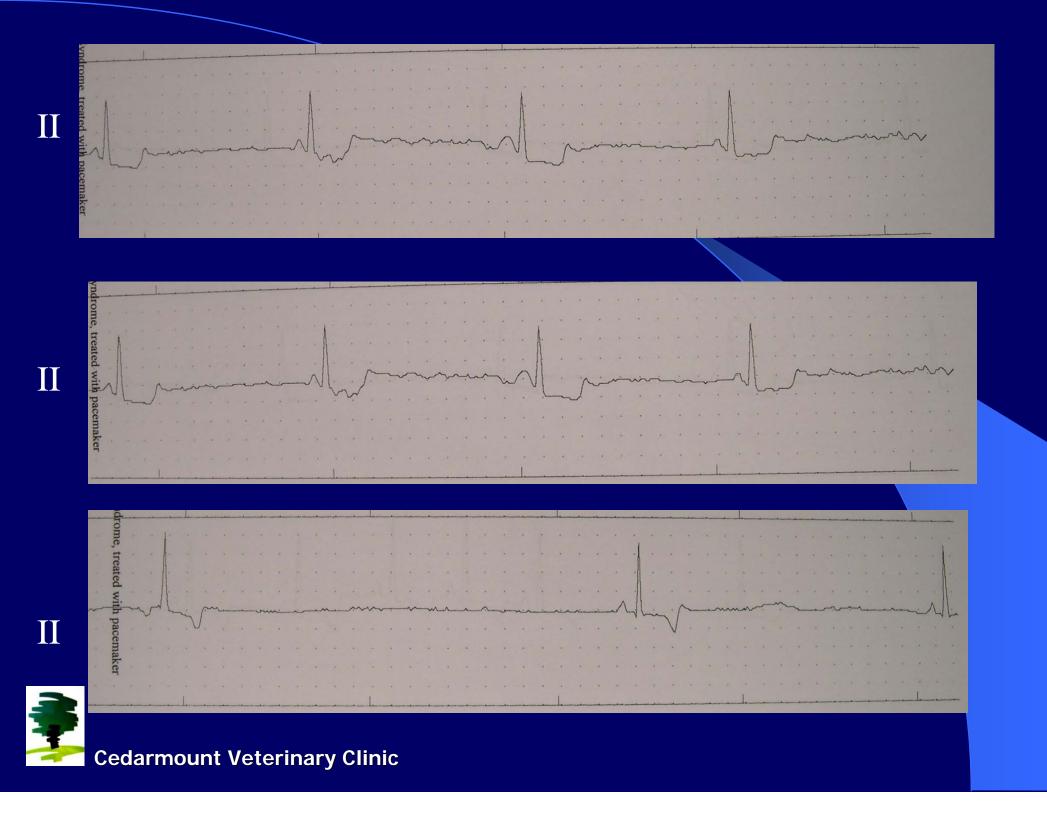
Acquired murmur (soft, grade II/VI, protosystolic murmur, loudest on the left at the apex of the heart)

- Degenerative mitral valve disease (or tricuspid)
- · (Anaemia ??pale mucous membranes)

Serum Chemistry	Result	Reference Range
Albumin	30 g/l	21-36 g/l
Serum alkaline phosphatase	322 U/L	46-337 U/L
Serum alanine aminotransferase	60 U/L	8-75 U/L
Amylase	1200 U/L	300-1300 U/L
BUN	9.00 mmol/l	2.5-10.35 mmol/l
Cholesterol	4.00 mmol/l	2.58-10.34 mmol/l
Total Calcium (unionised)	2.80 mmol/l	1.95-3.15 mmol/l
Creatinine	96 umol/l	27-106 umol/l
Glucose	8.14 mmol/l	5.00-7.78 mmol/l
Phosphate	2.67 mmol/l	1.65-3.35 mmol/l
Total bilirubin	10 umol/l	0-14 umol/l
Total Protein	56 g/l	48-72 g/l
Total thyroxine	40 nmol/L	15-51 nmol/L
Globulin	26 g/l	23-38 g/l
PCV	48 L/L	37.0-55.0L/L
HGB	16.0 g/dl	12.0-18.0 g/dl
мснс	36.5 g/dl	30.0-36.9 g/dl
WBC	10.0 x 10 ⁹ /L	6.0-16.9 x 10 ⁹ /L
GRANS	5.0 x 10 ⁹ /L	3.3-12.0 x 10 ⁹ /L
NEUTS	2.5 x 10 ⁹ /L	2.8-10.5 x 10 ⁹ /L
EOSINS	0.5 x 10 ⁹ /L	0.5-1.5 x 10 ⁹ /L
L/M %L/M	2.0 x 10 ⁹ /L	1.1-6.3 x 10 ⁹ /L
PLT	350 x 10 ⁹ /L	175-500 x 10 ⁹ /L

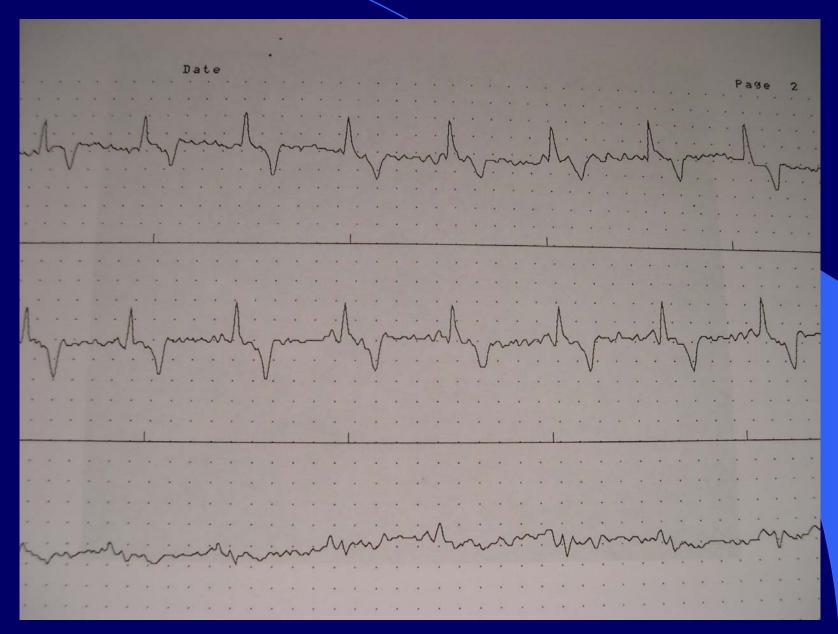


Parameter	Result	Reference Range
Glucose (mmol/L)	7.2	3.33-6.38
BUN (mmol/L)	9.0	3.57-9.28
Sodium (mmol/L)	145	142-155
Potassium (mmol/L)	4.5	3.4-4.9* (Serum 4.1- 5.5)
Chloride (mmol/L)	111	106-127
PCV (L/L)	48	35-50
Haemoglobin (g/dl)	16	12-17
рН	7.42	7.35-7.45



*The methodology of the Istat necessitates an Istat-specific reference range

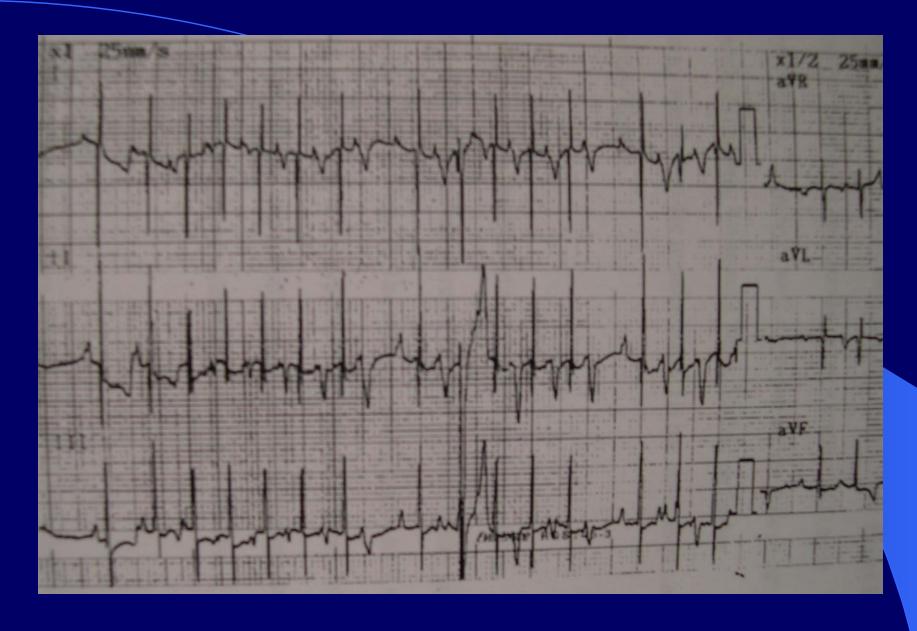
Cedarmount Veterinary Clinic


	Result	Reference Range
Heart Rate	60 bpm	70-160 bpm
Rhythm	Sinus bradycardia	
Р	0.04 sec 0.2 mV*	0.04 sec 0.4 mV
P-R	0.08 sec	0.06-0.13 sec
qRs	0.04 sec 1.1 mV*	<0.05 sec <2.0 mV
Q-T interval	0.2 sec	0.15-0.25 sec at normal heart rate
MEA*	+700	+40° to +100°
Comment	Some movement artefacts	

Footnote: the mains filter reduces the amplitude of all complexes slightly
* MEA determined by analysis of Lead I (net amplitude +6) and lead III (net amplitude +8)

(Tilley, 1992)

Atropine Response Test 30 mins post 0.04 mg/kg s/c



Treatment and Follow up

- Propantheline bromide 3.75 mg/kg PO q8h
- Good response for 8 weeks (HR 110/min)
- Recurrence of daily presyncopal episodes failed to respond to 7.5 mg propantheline, even when supplemented with slow release theophylline (Corvental-D) at 20 mg/kg q24h
- Referred for pacemaker

Preoperative ECG: periods of SVT as well as predominant bradycardia

Sick Sinus Syndrome

(Brady-tachy-syndrome)

- Idiopathic
- Female miniature schnauzers
- Female WHWT + Mack (MN WHWT)!
- Paced at 90/min (single chamber VVI, Vitrion)
- Continuing SVT controlled with digoxin (0.0625 mg q12h)
- Died of IPF six years later

Remember to remove pacemaker before cremation!

