Approach to the trauma patient

Dr David Mackenzie

BSc(Hons) MA VetMB PhD CertVC CertAVP(SAM) CertAVP(ECC) PGCertVPS MRCVS RCVS Advanced Practitioner in Emergency & Critical Care, Small Animal Medicine and Veterinary Cardiology

Trauma

- Trauma is very common
- Most trauma cases have polytrauma (>70%)
- Leading cause of death in primary care setting in many studies
- With good care, survival rates of >80% can be achieved (referral centres)

Trauma – what do we see?

Things that freak out the ...but less worrying to the

...things that worry me and not so much the owner...

Things that freak us both out*

*ECC vets never freak out. We are always calm and controlled

Very brief pathophysiology of trauma

Why do patients die of trauma?

- Maldistribution of blood flow change in circulating catecholamines, hormones, hypovolaemia
- Microcirculatory perfusion deficits and 'occult shock'
- Endothelial injury and damaged cell membranes
- Cellular damage
- Inflammation \rightarrow Coagulopathy \rightarrow Perpetuation of above damage
 - The primary goal in the trauma patient is to optimize oxygen delivery to the tissues
 - In initial resusc, everything is geared towards this goal
 - This depends on only 3 things:
 - Cardiac output
 - Blood Hb concentration
 - Oxygen saturation of Hb

SIRS/ Sepsis DIC ARDS AKI/ MODS Death

The art and science of **prioritising** Patients and their problems

'What's going to kill this animal first?'

'If you're the worst, you come first!'

Systematic approach to the trauma patient

- Get brief details of what's happened
- Give advice to client
- Advise attend without delay get an ETA
- Advise the team prepare for arrival

- The nursing team are invaluable in preparing for the arrival of the emergency or critical patient
- This minimises delay and stress once the patient has arrived and allows the plan to flow smoothly
- Have pre-prepared protocols ('care bundles') for different types of emergency/ presentation: The kit The protocol
 ? Trauma checklist

Care Bundle

A care bundle is a group of evidence-based interventions which, when used together, give a better outcome than if performed individually

ESICM

Critical Care Medicine

TRAUMATIC BRAIN INJURY CARE BUNDLE

Equipment

iv kit

Medication

Anti-seizure medication:

Mannitol 20% (200mg/ml)

Hypertonic (7.5%) saline

Analgesia:

Lidocaine

Medetomidine

Also:

Diazepam/Midazolam, phenobarbital Levetiracetam, propofol Methadone, fentanyl, buprenorphine, paracetamol

ET kit Infusion pump, syringe driver Blood tubes Multimonitor Oxygen, breathing circuit & Ambubag Ventilator Doppler BP machine Arterial line pressure transducer Ophthalmoscope Padded board and towel

CRASH TROLLEY

TRAUMATIC BRAIN INJURY CARE BUNDLE

Protocol

Tier 1: Extracranial stabilisation

- 1) Perform MBS assessment and identify life-threatening extracranial injuries, address as needed
- 2) Perform survey neurological exam and record MCGS score
- 3) Take baseline blood pressure place arterial line now, or later if possible. Obtain arterial blood-gas values if possible
- 4) Obtain iv access, obtain blood sample for electrolytes, acid-base, glucose, lactate, PCV/TS. Use peripheral vein for sampling, DO NOT take jugular samples
- 5) Attach multi-monitoring
- 6) Treat hypotension/ hypovolaemia initially with crystalloid fluid boluses (0.9% saline thought to be better than LRS).
 Consider use of HTS or vasopressors if poor fluid-responsiveness. Aim to keep MAP 90-120mmHg, and at least
 >70mmHg
- 7) Treat hypoxaemia flow-by or loosely-fitting mask. Aim for SpO2 > 95%
- 8) Treat hypercapnia initially increase oxygen flow-rate, if poorly responsive use high-flow consider intubation and ventilation. Aim for PaCO2/ ETCO2 35-45mmHg. Excessive reduction in CO2 pressure can result in cerebral vasoconstriction; therefore, it is not advised to drop below 30mmHg
- 9) Treat any identified electrolyte, acid-base or blood-gas derangements
- 10) Treat pain methadone, fentanyl CRI see doses below
 Use low dose initially to avoid respiratory depression. NB MGCS score will be difficult following opioid administration

Mild hypothermia (1-2°C below normal) may be beneficial

Consider blood transfusion if PCV low

TRAUMATIC BRAIN INJURY CARE BUNDLE

Tier 2: Intracranial stabilisation

- Treat seizures iv diazapem +/- iv phenobarbital
- Monitor for signs of increased or increasing ICP (see above)
- Monitor and maintain MAP 90-120mmHg (most crucial)
- Treat raised ICP:

0

- o Hypertonic saline 7.4%: 4ml/kg iv (2ml/kg cats) over 15mins, can be repeated q8hrs
 - Mannitol: 0.25mg/kg to 1g/Kg (5ml/kg of 20%) iv over 15mins

Mannitol can be repeated not more than every 4hrs to a maximum of 3x per 24hrs In both cases follow-up with crystalloids

- o Elevate head 15-30° use a rigid board to avoid neck-kinking
- o Control pain

o Prevent events that would increase ICP eg vomiting (treat with maropitant), coughing (treat with butorphanol or lidocaine)

TRAUMA CHECKLIST

Moorview

This is the initial assessment carried out on arrival

A B C D

- **A A**irway
- **B B**reathing
- **C C**irculation (?Pulse or heartbeat)
- C
- **D D**isability eg presence of any major injury

This is the initial assessment carried out on arrival

(you should already be prepared for this)

CABD

- **A A**irway
- **B B**reathing
- **C C**irculation (?Pulse or heartbeat)
- **D D**isability eg presence of any major injury

This allows rapid identification of any major problems and reassures the owner. The animal can then be classified as follows...

TRIAGE

Minor	delayed care
Delayed	urgent care
Immediate	immediate care / life-threatening
Dead	victim is dead / no care required

© 2002 AGN All Rights Res	I,Inc. erved
Notes:	44
Allergies: Prescriptive	Medication:
Mamai	Personal Information
Address:	
City:	St: Zip: Phone:
Male:	Female: Age: Weight:
D	ECEASED I MEDIATE
	DELAYED
	MINOR

Primary Survey

- The Primary Survey is an extensive of triage and amplifies the information obtained so far
- Performed by the Vet
- The aim is to identify and treat any potentially life-threatening problems, after ABCD
- The Primary Survey is based on the Major Body Systems assessment (MBS assessment)

Trauma – things to worry about

Cardiovascular

- Hypovolaemia/ hypotension
- Arryhthmias
- Cardiac contusions

Respiratory

- Pneumothorax
- Diaphragmatic hernia
- Haemothorax
- (Rib fractures)
- (Pulmonary contusions)

Neurological

- Traumatic brain injury
- Spinal trauma

Abdominal

- Haemoabdomen
- Uroabdomen
- (Septic peritonitis)

Other

- Significant internal bleeding
 - Abdomen
 - Pelvis/ around femur
- Wounds and fractures

Primary Survey – Cardiovascular system

- Mucous membrane colour pink, pale, cyanotic
- CRT <2s, prolonged, rapid
- Heart rate & rhythm
- Quality of apex beat
- Pulse quality

< 1 second:	Distributive shock (sepsis)
> 2 seconds:	Hypovolaemia, hypothermia
> 3 seconds:	Severe hypovolaemia Peripheral vasoconstriction/ Bradycardia/ Arrhythmia Cardiac dysfunction

Primary Survey – Cardiovascular system

- Mucous membrane colour pink, pale, cyanotic
- CRT <2s, prolonged, rapid
- Auscultation of heart rate & rhythm, quality of apex beat
- Pulse quality
 Heart rate

Is the heart rate appropriate for the situation?

Tachycardia

Hypovolaemia, Pain, Hypoxaemia, Hypercapnia, Hyperthermia, Sepsis, Anaemia, Stress, Heart failure

Bradycardia

Head trauma, severe decompensatory shock

Cats!

Hyperkalaemia (eg Uroperitoneum) – nowhere near as common as the textbooks suggest

Primary Survey – Respiratory system

Respiratory effort
Respiratory rate
Any abnormal noise eg stridor, stertor
Palpation and inspection of the neck and chest
Chest auscultation – wheeze, crackles, dull
Chest percussion – dull, hyper-resonant
Paradoxical abdominal movement

Primary Survey – Neurological system

- Mentation
 - Depressed
 - Obtunded
 - **S**tuporous
 - Comatose
- Pain perception & spinal reflexes
- Voluntary movement/ Ambulatory status
- Cranial nerves (Especially eyes)

Traumatic brain injury (TBI)

NOT the same as head trauma....but TBI should be carefully assessed and monitored in every head trauma patient

Owner worried ECC vet less worried

Both worried

Owner not worried/ oblivious ECC vet worried

Traumatic brain injury (TBI)

Actively consider:

Following any history of trauma

- Any evidence of head trauma
 - Wounds or fractures to the head
 - Ocular or aural injuries or haemorrhage
 - Epistaxis
- Neurological abnormalities
 - Altered mentation
 - Cranial nerve abnormalities esp pupil changes
- Traumatic brain injury is a major cause of mortality in trauma patients
- The main concern with head trauma is the risk of raised intracranial pressure (ICP)

Traumatic brain injury (TBI) Signs that alert you to raised ICP

- Dull mentation, obtundation, stupor, coma, or sudden change in mentation
- (Progressive) cranial nerve abnormalities, especially sudden decrease in PLR or changed pupil size (mydriasis > miosis)
- Bradycardia
- Systemic hypertension

Cushing's reflex Sign of impending or in-progress brain herniation

- Decerebrate posture (opisthotonos and all 4 limbs hyperextended)
- Decreasing MGCS/ loss of physiological nystagmus
- Hypoventilation/ irregular respiration

Primary Survey – Abdomen

Palpation –

Fluid Pain Gas/ tympany Wall rupture

Bladder – intact?

Look for bruising/ puncture wounds

Primary Survey – Other

- A brief survey to include other, less life-threatening injuries
 - Open wounds
 - Fractures
 - Other trauma eg ocular/ jaw/ dental
 - Body temperature

The capsule history

This can be taken at any appropriate time Eg while doing MBS assessment or once a plan is made and initial stabilization is underway

- Signalment
- Presenting complaint & *brief* history
- Last normal
- Any other current conditions/ medications
- Likely injuries/ cost/ prognosis
- Resuscitation status (code status)

Keep it brief, focused and directed! Do not let the owner waffle

Trauma Scoring Systems

Anatomic	Combined
Abbreviated Injury Score	TRISS
Injury Severity Score	ASCOT
New Injury Severity Score	ICISS
Anatomic Profile	
PATI	
ICISS	
TMPM-ICD9	
	Anatomic Abbreviated Injury Score Injury Severity Score New Injury Severity Score Anatomic Profile PATI ICISS TMPM-ICD9

Animal Trauma Triage Score (ATT)

Grade	Perfusion	Cardiac	Respiratory	Eye/muscle/integument	Skeletal	Neurological
0	mm pink & moist CRT ~ 2 sec Rectal temp 37.8°C (100°F) Femoral pulses strong or bounding	HR: Dog: 60–140 Cat: 120–200 Normal sinus rhythm	Regular resp rate with no stridor No abdominal component to resp	Abrasion, laceration: none <u>or</u> partial thickness Eye: no fluorescein uptake	Weight bearing in 3 or 4 limbs, no palpable fracture or joint laxity	Central: conscious, alert → sl dull; interest in surroundings Periph: normal spinal reflexes; purposeful movement and
1	mm hyperemic or pale pink; mm tacky CRT 0–2 sec Rectal temp 37.8°C (100°F) Femoral pulses fair	HR: Dog: 141–180 Cat: 201–260 Normal sinus rhythm or VPCs <20/min	Mildly incr resp rate & effort ± some abdominal component Mildly incr upper airway sounds	Abrasion, laceration: full thickness, <u>no</u> deep tissue involvement Eye: corneal laceration/ulcer, not perforated	Closed appendicular/rib fx or any mandibular fx Single joint laxity/luxation incl. sacroiliac joint Pelvic fx with unilateral intact lilium-acetab Single limb open/closed fx at or below carpus/tarsus	nociception in all limbs Central: conscious but dull, depressed, withdrawn Periph: abnormal spinal reflexes with purposeful movement and nociception intact in all 4 limbs
2	mm v pale pink & v tacky CRT 2–3 sec Rectal temp <37.8°C (100°F) Detectable but poor femoral pulses	HR: Dog: >180 Cat: >260 Consistent arrhythmia	Mod incr resp effort with abdmon component, elbow abduction Moderately incr upper airway sounds	Abrasion, laceration: full thickness, deep tissue involvement, and arteries, nerves, muscles intact Eye: corneal perforation, punctured globe or proptosis	Multiple grade 1 conditions (see above) Single long bone open fx above carpus/tarsus with cortical bone preserved Non-mandibular skull fx	Central unconscious but responds to noxious stimuli Periph: absent purposeful movement with intact nociception in 2 or more limbs <u>or</u> nociception absent <u>only</u> in 1 limb; decr anal and/or tail tone
3	mm gray, blue, or white CRT >3 sec Rectal temp <37.8°C (100°F) Femoral pulse not detected	HR: Dog: <60 Cat <120 Erratic arrhythmia	Marked resp effort or gasping/agonal resp or irregularly timed effort Little or no detectable air passage	Penetration to thoracic/abd cavity Abrasion, laceration: full thickness, deep tissue involvement, and artery, nerve, or muscle compromised	Vertebral body fracture/luxation except coccygeal Multiple long bone open fx above carpus/tarsus Single long bone open fx above tarsus/carpus with loss of cortical	Central: nonresponsive to all stimuli; refractory seizures Periph: absent nociception in 2 or more limbs; absent tail or perianal nociception

bone

Gives an ATT score of 0-18

3

5

Animal Trauma Triage Score (ATT)

Glasgow Coma Scale

Serial monitoring over time is critical

Modified Glasgow Coma Scale (MGCS)

Patient name:

Date:

		Time						
MOTOR ACTIVITY	Score	Admission						
Normal gait, normal spinal reflexes	6							
Hemi-paresis/ Tetra-paresis/ Decerebrate rigidity	5							
Recumbent, intermittent extensor rigidity	4							
Recumbent, constant extensor rigidity	з							
Recumbent, constant extensor rigidity with opjethetoouts	2							
Recumbent, hypotonia, depressed/ absent spinal reflexes	1							
BRAINSTEIN REFLEXES								
Normal PLK and Oculdcephalic renexes	6							
Slow PLR/ normal or reduced Oculocephalic reflexes	5							
Bilateral unresponsive miosis/ normal- reduced Oculocephalic reflexes	4							
Pinpoint pupils/ reduced to absent Oculocephalic reflexes	з							
Unilateral unresponsive mydriasis	2							
Bilateral unresponsive mydriasis	1							
Responsive to environment/ periods of alertness	6							
Depression/ delirium	5							
Semi-comatase: responsive to visual stimuli	4							
Semi-camatase: responsive to auditory stimuli	3							
Semi-comatase: responsive to noxious stimuli	2							
Comatose: unresponsive to repeated noxious stimuli	1							
Total MGCS sci	ore /18							

Primary survey Secondary survey

- Any significant problems identified during the Primary Survey should be addressed
- There is discrepancy between what is included as 'Primary' vs 'Secondary' survey, but this is largely semantic, as the next steps are:
 - Secure vascular access and obtain EDTA and heparinised blood samples
 - Obtain further information (ideally a multiparameter monitor):
 - Blood pressure
 - ECG
 - SpO₂
 - Imaging

Bloodwork

- Standard bloodwork is of little use in the trauma patient
- Much more useful is the 'Emergency database', which should include:
 - PCV (manual NOT machine HCT) and TP (refractometer)
 - Blood glucose (glucometer)
 - Lactate (lactate meter)
 - Electrolytes*
 - Blood urea nitrogen (urea stick or machine)
 - Acid-base parameters*
 - Blood film exam
 - Coagulation profile
 - Urine SG (before fluid therapy!)

These parameters most reliably distinguish trauma severity and survival (correlate ATT score) *Really good way to get these is to use machine like iSTAT or EPOC which will give you most of the emergency database information from a single blood sample

Bloodwork – Emergency database

Some useful tips

PCV/TP is usually initially normal even after severe blood loss
 O Values give a baseline for further monitoring

- BG can go very high due to stress (in cats up to 25mmol/L or more)
- Can see hyperglycaemia in dogs due to head trauma or severe hypovolaemia
- High BUN/creatinine in a trauma case raises suspicion for uroabdomen
- In the trauma case, lactate is a good indicator of hypovolaemia/ tissue perfusion
- Electrolyte/ acid-base changes, if severe, can be life-threatening
- Stress leucogram is common this is NOT inflammation OR infection
 O BUT if inflammation then increased risk of vasodilatory shock
 - Consumptive thrombocytopaenia seen in significant haemorrhage
 - BUT NB DIC!! (Low platelets combined with prolonged coag times)

Bloodwork – Emergency database

WBC	21.65	K/µL	HIGH	(6.00	-	17.00
NEU	18.84	K/µL	HIGH	(3.00	-	12.00
LYM	0.65	K/µL	LOW	(1.00	-	5.00
MONO	1.95	K/µL	HIGH	(0.15	-	1.35
EOS	0.22	K/µL		(0.10	-	1.25
BASO	0.00	K/µL		(0.00	-	0.10

Stress leucogram

WBC	22.85	x10³/µL	HIGH	(5.50	-	16.90)	
NEU	19.93	x10³/µL	HIGH	(2.00	-	12.00)	
LYM	0.53	x10 ³ /µL	LOW	(0.70	-	4.90)	
MONO	2.40	x10³/µL	HIGH	(0.30	-	2.00)	
EOS	0.00	x10³/µL	LOW	(0.10	-	1.49)	
BASO	0.00	x10³/µL		(0.00	-	0.10)	

Inflammation

Neutrophilia + Left shift Lymphopenia Eosinopenia Minimal monocytosis

Assessment of severity

The following parameters have been consistently associated with survival across many studies:

- ATT score (especially > 5)
- GCS and \downarrow GCS
- BE and \downarrow BE
- pH
- ↑ Lactate
- Traumatic brain injury is a particularly poor prognostic indicator...but is treatable

BUT!!!

- These are all drawn from population analysis
- Extreme care should be used in making decisions for individual animals
- Trends and response to therapy is MUCH more important
- Use the scoring to determine the intensity of care required......referral.....

Emergency imaging

 By far the best way of performing emergency imaging is with point-of-care ultrasound (POCUS)

Emergency imaging

POCUS should consist of rapid 'bedside' assessment of:

- Abdomen APOCUS record volume of fluid and give AFS score
- Thorax TPOCUS
- Heart POCUS Echo

KEEP CALM AND LOVE ULTRASOUND

• This is a rapid scan assessing the abdomen in 4 sites, moving round like a clockface

Key assessment points:

- Presence of free fluid if present then tap and analyse
- Damage to liver, spleen, bladder

- The majority of animals with free abdominal fluid following blunt trauma (eg RTA) <u>DO NOT</u> require abdominal surgery/ 'exploratory laparotomy'
- Monitor these animals with repeat FAST scanning
- Indications for surgery are:
 - Obvious site of bleed eg ruptured spleen
 - AFS score increasing despite medical stabilisation
 - Patient deterioration despite medical stabilisation
 - The abdominal fluid is urine, bile or pus

Algorithm for approach to cases with suspected abdominal fluid using serial AFAST scoring system

TPOCUS is incredibly useful for thorax assessment in the trauma patient:

- Pneumothorax
- Pulmonary contusions
- Pleural effusion (haemothorax)
- Diaphragmatic hernia

Use a systematic method:

- DH site
- CTS site
- PCS site

Emergency imaging – TPOCUS – DH site

 $\mathsf{DH} \to \mathsf{CTS} \text{ site}$

Emergency imaging – TPOCUS – DH site

Emergency imaging – TPOCUS – CTS site

Image courtesy Greg Lisciandro ©2016 FASTVet.com and ©Wiley-Blackwell 2014

Image courtesy Greg Lisciandro ©2016 FASTVet.com and ©Wiley-Blackwell 2014

TPOCUS – pericardial (PCS) site

Trauma CT – fantastic if you've got it

Trauma CT

Moorview

Triage and Primary/Secondary Survey - Summary

The Prep

Emergency Plan

- Treatment of any life-threatening injuries identified during the primary survey
- Treatment of any life-threatening injuries identified during the secondary survey
- Treatment should have a specific end-goal 'goal-directed therapy' and continue until that goal is achieved
- Clinical signs should be integrated, cross-referenced, and serially monitored
- Inadequate or unexpected response, or discordancy, should be investigated

I love discordancy. It makes people ill at ease and wakes up a part of their brain that's normally asleep.

John Lydon

Target resusc endpoints in the trauma patient

Parameter	Target endpoint
Mentation	Alert
HR	Dog 80-140, Cat 180-200
MM colour	Pink
CRT	1-2 seconds
Pulse quality	Good
MAP (mmHg)	60-80 (>65)*
sABP (mmHg)	90-100*
Respiratory rate and effort	20-30bpm, normal effort
SpO ₂ (%)	>95
PCV (%)	>25
Lactate (mmol/L)	<2.5
рН	>7.32
BE (mmol/L)	-5 to +5
Electrolytes	Normal
UOP (ml/kg/hr)	>1

Emergency Plan – 1) Oxygen

The 1st commandment for the emergency patient

Oxygen supplementation

The only contra-indication to oxygen therapy is if the patient is on fire.

Emergency Plan – 1) Oxygen

Percent of oxygen achieved and time taken to reach noted levels

Method of supplemental oxygen delivery	% of oxygen concentration achievable	
Nasal cannula	40%-50%	
Nasal catheter	40%-70%	
Nasopharyngeal catheter	60%-80%	
Nasotracheal catheter	60%-90%	
(Crowe) oxygen collar	50%-80%	
Oxygen cages	30%-60%	
Non-rebreathing mask	90%-100%	

Flow rates

- Nasa
 Moorview
 Nasa
- Nasal prongs 50-100ml/kg/min
 - Nasal catheter 25-50ml/kg/min

The fundamental difference between hypovolaemia and dehydration

- Dehydration refers to loss of fluid from the interstitial space
- Hypovolaemia refers to loss of fluid from the intravascular space
- These produce different clinical signs and are assessed differently

Classic signs of hypovolaemic shock:

- Decreased mentation
- Pale mm
- Prolonged CRT
- Tachycardia
- Poor pulse quality
- Reduced temperature of the extremities

Classic signs of dehydration:

- Skin 'tenting'
- Tacky or dry mucous membranes
- Increased PCV/TP 'Haemoconcentration'

In trauma cases, we will be assessing and treating hypovolaemia not dehydration

Hypovolaemia versus dehydration

This table summarises the differences between mild to moderate dehydration and acute hypovolaemia, with respect to the volume changes in each fluid compartment, clinical signs and laboratory parameters

	Mild to moderate dehydration	Acute hypovolaemia
Intravascular volume	↓ ??	+++
Interstitial volume	↓ I	👃 /No change
Intracellular volume	↓ ↓	No change
Heart rate	No change	† † †
Capillary refill time	No change	🕇 progressing to 📕
Skin turgor	11	No change
Total solids/packed cell volume	1	No change/ 🖊 total solids
Urine output	↓ ↓	t
Pulse quality	No change	Hyperdynamic pulses (obvious but short) progressing to hypodynamic (weak and short)

- Before fluid therapy, take a moment to consider types of shock
 - **HYPOVOLAEMIA** by far the most common type
 - **Distributive** severe tissue trauma \rightarrow Systemic vasodilation

- Before fluid therapy, take a moment to consider types of shock
 - **HYPOVOLAEMIA** by far the most common type
 - **Distributive** severe tissue trauma \rightarrow Systemic vasodilation
 - Cardiogenic 'pump failure'
 - Cardiac contusions
 - Pericardial effusion ('Obstructive')
 - Severe arrythmia

Important!

- Hypovolaemia → Fluids.....Vasopressors
- Distributive \rightarrow (Fluids), Vasopressors eg noradrenaline
- Cardiogenic \rightarrow NO FLUIDS! \rightarrow
 - Drain pericardial effusion
 - Treat arrhythmia
 - Inotropes eg Dobutamine

atus **KEEP** CALM AND LOVE ULTRASOUND 0 В Hypovolaemia 4CM 40HZ

Additional assessment of volume status

DH site

Additional assessment of volume status

Hypovolaemia

Normal/ hypervolaemia

lliac site

Additional assessment of volume status

Macrocirculatory markers

- MM colour, CRT, pulse quality, HR (NB differences in cats!)
- Echocardiography, ultrasound

Mirocirculatory markers (markers of tissue perfusion)

- Lactate, BE, pH
- Metabolic acidosis is common due to impaired tissue perfusion (usually lactate acidosis)
- Hypoperfusion can markedly $\uparrow PCO_2$ (ie distinguish from hypoventilation)

Ideally need to integrate both to give a 'global' assessment of volume status and tissue perfusion

General fluid plan

- Hartmann's (LRS) unless good reason not to (eg alkalosis uncommon)
- 'Shock bolus'
 - Dog 10-20ml/kg iv over 15mins
 - Cat 5-10ml/kg iv over 15mins
- Then reassess volume status parameters

Reasons for poor/ unexpected response:

- Insufficient fluids repeat bolus and reassess
- Underlying cause ongoing eg continuing haemorrhage
- Different type of shock eg cardiogenic
- Fluid 'non-responder'

- General plan should be to give fluid bolus then reassess
- Repeat fluid bolus 3x until reach goal-directed endpoint
- If not reached, and no other cause identified, consider vasopressor, possibly more/other fluids based on assessment
 - Hypertonic saline 3-5ml/kg over 10 minutes also good for head trauma
 - Norepinephrine (NE) CRI
- If response to NE poor, and no other cause identified, consider:
 - Plasma transfusion (good natural colloid) good for ATC/ DIC
 - pRBCS/ whole blood for bleeding/ anaemia
 - Hydrocortisone CRI
- Positive fluid balances (ie over-loading) is associated with worse outcomes in human and veterinary medicine

• Fluids should be treated like drugs and dosed carefully and appropriately!

Some extra tips:

- Maintaining MAP > 65mmHg is the only intervention proven to be effective in traumatic brain injury cases
- Hypotensive/ low volume resuscitation
 - In some cases, we want to set our 'resusc end-goal' a little lower
 - Eg cavitatory or ongoing haemorrhage
 - Pulmonary contusions/ lung oedema
- Here, the aim is to maintain MAP around 60-65mmHg
 - Minimises further haemorrhage
 - Reduces disruption of clots
- Hypothermic animals should be fluid resuscitated first before re-warming

A word on venous access

• Consider the medial saphenous vein your 'go to' vein in traumatised cats

Other options are:

• Lateral saphenous in dogs

- Jugular catheter
- A normal iv catheter can be placed for temporary resuscitation

• 'Central lines' are also quick and easy to place (usually)

Never be afraid to do a venous cut-down

Emergency Plan – 3) Analgesia

Emergency Plan – 3) Analgesia

- Do not give NSAIDs to trauma cases until volume status and renal perfusion is secured
- Perform neurological assessment before giving opioids
- Use full μ-agonists eg methadone, fentanyl do not start with buprenorphine as (controversial) may antagonise subsequent full μ agonist
- Fentanyl is not a 'stronger' analgesic than methadone, it is just more potent
- If giving CRIs, MUST start with a loading dose
- Multimodal analgesia is best
- Good combinations are:
 - Opioid + Ketamine (Dogs and cats) CRIs ?even better
 - Opioid + Ketamine + Lidocaine
 - Opioid + Ketamine +/- Lidocaine +/- α -2 (medetomidine) *in appropriate cases*
 - +/- Benzodiazepine safe, good anxiolysis/sedation when combined with opioid
 - Local anaesthesia/ Nerve blocks/ Wound soakers where appropriate
- Use Pain Scoring eg Glasgow Pain Scale and adjust analgesia frequently as necessary
 Butorphanol good for dyspnoea cases but a poor analgesic

Bleeding

• As well as external bleeding, animals can suffer significar

Bleeding – battlefield experience

Bleeding – battlefield experience

Bleeding – Tranexamic acid (TXA)

- Rony NDC 724851074 Tranexamic Acid ajection Dolong/10 mL (tomper brainsigle-Dose Vial Tom Single-Dose Vial
- TXA is used extensively in human medicine for trauma and peri-operative bleeding
- Concerns have been raised about increased risk of thromboembolism
- Net effect seems to be beneficial
- Studies in veterinary medicine are sparse and have been conflicting
- However, adverse effects seems rare and mild (most common is vomiting/ nausea)
- Therefore, may be a case for using but true benefit is unproven
- Dose is also controversial but 10-20mg/kg iv q6hrs is standard (can be given as CRI)
- May only be beneficial within first 3 hours post-trauma
- Acute traumatic coagulopathy (ATC) ?not just for overt bleeding

Wounds

- All wounds should be taken seriously
- BUT, the most serious wounds are often those which appear minimal from the outside the 'tip of the iceberg effect'
- These are more commonly associated with puncture/ penetrating wounds and more serious internal linjury

Penetrating thoracic injuries

- Bite wounds are most common cause
- Remember 'tip of the iceberg'
- Consider common concurrent injuries
- Pneumothorax
- Cover wound and try to seal to allow negative pressure
- Be prepared for rapid intubation and/or chest drain placement
- Care bundle!
- Treat life-threatening injuries prior to addressing the wound itself
- Surgical wound exploration should be strongly considered in all cases of penetrating thoracic injury, once the patient is stabilised – NOT just haemostat 'probing'

Penetrating thoracic injuries

Penetrating thoracic injuries

CT is excellent for assessment of full extent of thoracic wounds

Traumatic thoracic injury

- Traumatic thoracic injuries are very common and should be actively ruled in/out
- Pneumothorax is so common it should be assumed present until proven otherwise
- Pneumothorax can be:
 - Closed pleural rupture, air enters the chest through the pulmonary parenchyma
 - Can also be associated with rupture of trachea/ oesophagus
 - Open air enters the chest from an external penetrating injury to the thorax
 - Tension pneumothorax (closed or open) progressive air accumulation through oneway valve effect – life-threatening emergency

Initial management of pneumothorax

- Oxygen for support and may accelerate resolution of closed pneumothorax
- Repeat thoracocentesis get good at rapid butterfly catheter insertion
 - Pneumothorax is most often bilateral
- Fluid therapy
 - Can get hypotensive shock due to reduced venous return, especially tension pneumothorax
- Sedation and analgesia
- If repeat thoracocentesis required, place a thoracostomy tube
 - Get good at rapid Seldinger technique

- Failure to achieve negative pressure:
 - Tube not fully inserted (fenestration outside the patient)
 - Lung penetration or tube somewhere else in the wrong place
 - True ongoing air leakage
 - This will require continuous suction drainage

Management of open pneumothorax

- Oxygen
- Intubation and positive pressure ventilation
- Temporary wound closure with chest tube in place
 - Skin can be sutured over the open wound and then the areas dressed
- Broad-spectrum antibiosis
- Definitive wound management in due course usually requires thoracotomy/ sternotomy
- Analgesia and sedation

Summary

- Triage
- ABCD/ CABD
- MBS CRNA O
- ABCD MBSCR
- Care bundles/ Pro
- Emergency datab
- Goal-directed the
- Imaging POCUS

- Oxygen
- Fluids consider as drug
 - Macro- & micro- circulation
- Analgesia multimodal

3 things to optimise: Cardiac output Blood Hb concentration Oxygen saturation of Hb

• Consider internal injuries – don't be distracted by 'freak out' injuries, think icebergs

THANK YOU

